圆的周长教案模板汇总九篇

时间:2024-03-14 08:30:18
圆的周长教案模板汇总九篇

作为一名教职工,通常会被要求编写教案,借助教案可以更好地组织教学活动。教案应该怎么写才好呢?下面是小编为大家收集的圆的周长教案9篇,仅供参考,欢迎大家阅读。

圆的周长教案 篇1

【教学内容】

教科书第24-25页例1、例2,课堂活动第1、2题,练习五第1~5题。

【教学目标】

1.掌握圆周率的近似值,理解和掌握圆周长公式,并能正确计算圆的周长和解答简单的实际问题。

2.让学生在知识的主动建构过程中掌握一些数学的思想方法,发挥学生学习的主动性、独立性、合作性,对学生进行辨证唯物主义教育和爱国主义教育。

【教学重、难点】

掌握并理解圆的周长计算公式及其推导过程。

【教具、学具准备】

圆规、直尺、课件、圆纸片、线。

【教学过程】

一、导入新课

出示情境图:谁的铁环滚一圈的距离长一些?为什么?

教师:铁环滚动一周的距离我们就叫做铁环的周长。

教师:围成圆的曲线的长叫做圆的周长。今天我们就一起来研究圆的周长。

板书课题:圆的周长。

二、感知圆的周长与直径的关系

1.老师出示一个圆(实物)。谁来指一指这个圆的周长?课件出示一个圆。谁来指一指这个圆的周长?

学生指出并回答。(略)

2.观察。

课件演示右图:

问题:这两个圆周长有什么关系?你是怎么知道的?

小结:直径相等,圆的周长就相等。

3.课件演示右图:

问题:这两个圆的周长哪一个长一些?为什么?学生回答后,课件演示由曲变直,对学生的推断进行检验。

4.小结。

问题:通过刚才的观察,你有什么发现?

学生:圆的周长和直径有关系。

三、探究圆的周长与直径的倍数关系

圆的周长和直径有怎样的关系呢?我们一起来作一个实验,测量学具中圆形的周长和直径,然后再用周长除以直径得出它们的商。

1.小组讨论,制定探究步骤。

出示探究建议:

(1)测量圆的周长和直径;(2)记录数据;(3)进行计算;(4)得出结论。

2.说明活动要求。

每个组的同学先测量出学具中圆形的周长和直径,然后再用周长除以直径,并把这些数据和计算的结果填在表里。

圆的直径圆的周长周长除以直径的商(保留两位小数)

3.小组合作,进行探究。

4.汇报交流。

(1)交流测量的方法。

提问:谁来介绍一下,你们组是怎样测量圆的周长的?

学生汇报测量的方法。(绳绕法、滚动法……)

教师:在这些方法中,最欣赏哪个组的方法?

小结:不同的材料,可以用不同的方法进行测量。无论是哪一种方法,都是在想办法把圆这个曲线图形转化成直线来进行测量的。(课件出示绳绕法、滚动法……的动画测量过程)

(2)交流计算方法和结论。

提问:观察这些计算结果,你有什么发现?你还有哪些了解?

学生汇报:圆的周长是它的直径的3倍多一些。这个3倍多一些的数叫圆周率,用字母π表示。

5.介绍圆周率。

圆周长和直径的比值叫做圆周率,对于圆周率我国古代的数学家就对此有了研究了,他们把圆内接正六边形的周长近似的看作圆的周长,因为正六边形的周长是直径的3倍,所以近似的看成圆的周长是直径的3倍,(出示课件,展示圆内接正六边形周长是圆直径的3倍)可是大家可以发现圆内接正六边形的周长与圆的周长的误差太大了。因此把它的边数加倍,得到正十二边形,再加倍到正二十四边形。我国古代伟大的数学家刘徽用圆的内接正96边形,算出圆的周长是直径的3.14倍,而祖冲之用圆的内接正16384边形,算出圆的周长与直径的倍数精确到小数点后第七位:3.1415926与3.1415927之间,是世界上把圆周率精确到小数点后第七位的第一人,他在数学上的伟大贡献得到了世界的公认。同学们,你们发现了什么呢?(分得的边数越多,精确的数位越多)到了现代,人们用计算机对圆周率进行计算,1999年日本的两位科学家把π值精确到20xx亿位。

6.总结圆周长的计算方法。

问题:你怎样理解周长/直径=π?你还能知道什么?

结论:c=πd,d=c/π,c =2πr,r=c/2π。

说明:为了计算方便,我们把π近似的取为3.14。

7.教学例2。

让学生独立列式计算,提示用估算检查计算结果。

[评析:有前面数学活动的基础,总结出圆周长的计算公式已经是水到渠成,整个过程充分发挥学生的主体作用。让学生学习例2这既是验证刚发现的圆周长计算公式,又是初步运用,巩固刚发现的公式,更是让学生经历科学发现的完整过程。]

四、巩固练习

(一)判断。

1.π=3.14。()

2.计算圆的周长必须知道圆的直径。()

3.只要知道圆的半径或直径,就可以求圆的周长。()

(二)选择。

1.较大的圆的圆周率()较小的圆的圆周率。

a.大于b.小于c.等于

2.半圆的周长()圆周长。

a.大于b.小于c.等于

(三)实践操作。

请同学们以小组为单位,画一个周长是12.56厘米的圆。先讨论如何画,再操作。

五、课堂小结

通过这堂课的学习,你有什么收获?你还有什么问题?

六、课堂作业

1.课堂活动第1、2题。

将课堂活动第1题的直径扩展到9cm为止,当学生算完后,除了观察直径、周长的变化外,还要能让学生将直径与周长对应的值记一记。第2题的图形周长在于引导学生去探索这个图形的周长指哪些线,怎么算,最后概括出半圆周长的计算公式。

2.练习五第1~5题。

在学生理解半径、直径、周长之间相互关系的基础上,运用公式进行计算。教学时,要求学生认真审题,分清每题的条件和问题,合理地运用公式,同时注意每题的单位名称。其中,练习五第3题,可以用教具进行演示,说明计算分针尖端走过的路程,就是求半径是15厘米的圆的周长。

七、课后作业

1.求下面各圆的周长。

(1)d=2米(2)d=1.5厘米(3)d=4分米

2.求下面各圆的周长。

(1)r=6分米(2)r=1.5厘米(3)r=3米

[评析:创设生活情境,密切与生活之间的关系。再通过观察发现圆周长与直径有关,究竟是什么关系呢。接着就引导学生做实验,探索出圆周长 ……此处隐藏5161个字……m、15cm)

②下面以小组为单位用围或滚的方法量一量圆的周长,并算一算,周长与直径有怎样的关系?请小组长负责分工,看哪一组量得准,算得快。结果填在表格中。

(4)比较验证,揭示规律:

①汇报交流:通过测量和计算,你发现什么规律?

生:直径不同,周长也不同,但周长总是直径的三倍多一些。

②问:是不是所有圆的周长都是直径的3倍多一些呢?

电脑演示围、滚的过程和结果,让学生看看圆的周长是直径的几倍。

[设计意图:通过学生探究圆的周长与直径的关系、小组实验操作与计算、电脑演示验证等,让学生发现圆周长与直径的关系。]

4.介绍圆周率,推导公式,探求新知(重点和难点)。

(1)引导得出圆周率概念:

师:看来圆不论大小,圆的周长总是它直径的3倍多一些。这是个固定不变的倍数关系。(师质疑:为什么我们测量和计算的结果会不一样?解释:测量误差)。数学上我们把圆的周长和直径这个固定不变的比值叫做圆周率,用字母π表示。用式子表示是:

补充板书:圆的周长÷直径=圆周率π(固定)

教师讲解:π=3.141592653 ‥‥(无限不循环小数)

π≈3.14

(2)引导自学圆周率小资料:其实,很早以前,人们就开始研究圆周率这个问题了,关于这方面知识,我们可以在课后自学书上p63表后相关介绍。

师:现在,我们根据这个规律能否探究出圆的周长公式呢?

(3)公式推导:

师指圆周率公式:刚才我们通过自学知道圆周率是圆的周长与直径的比值,用字母表示是:

板书:C÷d=π

师:已知圆的直径怎样求圆的周长呢?同桌互相说一说。

板书:C=πd

师:已知半径怎么求圆的周长呢?

板书:C=2πr

问:知道什么条件就可以计算圆的周长?(强调:d、r)

师:这样,今后我们要知道圆的周长不但可以用围或滚的测量,现在我们还可以用公式计算了,下面我们就应用这两个公式解决一些实际问题。

5、应用公式解决实际问题。

(1)解决龟兔赛跑问题:

问:学了周长公式,现在你们会解决龟兔赛跑问题了吗?

? 学生尝试解答

? 指名板演,

? 集体订正,问:这位同学是利用什么公式做的?需要什么条件?

? 教师课件演示规范步骤。

(2)实际应用:汽车车轴距离地面0.4米,车轮滚动一周是多少米?如果车轮滚动了1000周,那么汽车行了多少路程?

[学习知识的目的是为了应用,在应用环节设计了两个例题,一是解决课前的问题,是已知d求c。二是小车轮胎问题,是已知r求c。这是两个学生经常接触的数学问题,具有代表性。]

(三)课堂小结

这堂课你有什么收获?(出示填空)

1、基础练习:(略)

2、知识延伸:(略)

3、课后思考:(略)

[巩固练习设计三个层次:基础题是解决当堂重要知识和易错点;提高题是让学生能综合利用;课后思考是为下节课承前启后.]

(五)作业:

1、花瓶最大处的半径是15厘米,求这一周的长度是多少厘米?花瓶瓶口的直径是16厘米,求花瓶瓶口的周长是多少厘米?花瓶瓶底的直径是20厘米,求花瓶瓶底的周长是多少厘米?

2、钟面分针长10厘米,求针尖一天走过多少厘米?

3、喷水池的直径是10米,要在喷水池周围围上不锈钢栏杆2圈,求两圈不锈钢总长多少米?

(六)板书设计(略)

圆的周长教案 篇9

教学目标:

1、通过教学使学生学会根据圆的周长求圆的直径、半径。

2、培养学生逻辑推理能力。

3、初步掌握变换和转化的方法。

教学重点:求圆的直径和半径。

教学难点:灵活运用公式求圆的直径和半径。

教学过程:

  一、复习。

1、口答。458

2、求出下面各圆的周长。

C=r3.14223.144=6.28(厘米)=83.14=25.12(厘米)

二、新课。

1、提出研究的问题。

(1)你知道表示什么吗?

(2)下面公式的每个字母各表示什么?这两个公式又表示什么?

C=r

(3)根据上两个公式,你能知道:

直径=周长圆周率半径=周长(圆周率2)

2、学习练习十四第2题。

(1)小红量得一个古代建筑中的大红圆柱的周长是3.768米,这个圆柱的直径是多少米?(得数保留一位小数)

已知:c=3.77m求:d=?

解:设直径是x米。

3.773.143.14x=3.77

1.2(米)x=3.773.14

x1.2

(2)做一做。用一根1.2米长的铁条弯成一个圆形铁环,它的半径是多少?(得数保留两位小数)

已知:c=1.2米R=c(2)求:r=?

解:设半径为x米。

3.142x=1.21.223.14

6.28x=1.2=0.191

x=0.1910.19(米)

x0.19

三、巩固练习。

1、饭店的大厅挂着一只大钟,这座钟的分针的尖端转动一周所走的路程是125.6厘米,它的分针长多少厘米?

2、求下面半圆的周长,选择正确的算式。

⑴3.148

⑵3.1482

⑶3.1482+8

3、一只挂钟分针长20cm,经过30分后,这根分针的尖端所走的路程是多少厘米?经过45分钟呢?

(1)想:钟面一圈是60分钟,走了30分,就是走了整个钟面的,也就是走了整个圆的。而钟面一圈的周长是多少?20xx.14=125.6(厘米)

(2)想:钟面一圈是60分钟,走了45分,就是走了整个钟面的,也就是走了整个圆的。则:钟面一圈的周长是多少?20xx.14=125.6(厘米)

45分钟走了多少厘米?125.6=94.2(厘米)

4、P66第10题思考题。下图的周长是多少厘米?你是怎样计算的?

四、作业。P65-66第3、6、7、9题

教学追记:

圆的周长计算公式并不复杂,但这个公式如何得来,公式中的固定值是如何来的,都是值得学生研究的问题。因次,教学中,我着力于培养学生的探究意识和探究能力,让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径的关系、验证猜测等过程来理解并掌握圆的周长计算方法。因为是自己操作的所得,再加上我在课中介绍了一些相关资料及讲述了一个有趣的小故事,所以学生对的含义就理解得特别透彻,也学得有兴趣。

《圆的周长教案模板汇总九篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档